Расстояние до токоведущих частей пуэ до 1кв

Здравствуйте, в этой статье мы постараемся ответить на вопрос: «Расстояние до токоведущих частей пуэ до 1кв». Если у Вас нет времени на чтение или статья не полностью решает Вашу проблему, можете получить онлайн консультацию квалифицированного юриста в форме ниже.

Специалисты в области электротехники прекрасно ориентируются не только в обслуживаемых электроустановках, но и в мерах безопасности, которые необходимо соблюдать при выполнении работ и нахождении в непосредственной близи от трасы ВЛ. Однако если вам чужды понятия электробезопасности в части эксплуатации электроустановок, то все попытки порыбачить под опорами ВЛ или произвести какие-либо погрузочно-разгрузочные работы в охранной зоне могут закончиться плачевно.

Область применения. Определения

2.5.1. Настоящая глава Правил распространяется на воздушные линии электропередачи напряжением выше 1 кВ и до 750 кВ, выполняемые неизолированными проводами (ВЛ), и напряжением выше 1 кВ и до 20 кВ, выполняемые проводами с защитной изолирующей оболочкой — защищенными проводами (ВЛЗ).

Требования к ВЛ с неизолированными проводами распространяются и на ВЛ соответствующего напряжения, выполняемые проводами с защитной изолирующей оболочкой, кроме требований, специально оговоренных в настоящих Правилах.

Настоящая глава не распространяется на электрические воздушные линии, сооружение которых определяется специальными правилами, нормами и постановлениями (контактные сети электрифицированных железных дорог, трамвая, троллейбуса; ВЛ для электроснабжения сигнализации, централизации и блокировки (СЦБ); ВЛ напряжением 6-35 кВ, смонтированные на опорах контактной сети и т. п.).

Кабельные вставки в ВЛ должны выполняться в соответствии с требованиями, приведенными в 2.5.124 и гл. 2.3.

2.5.2. Воздушная линия электропередачи выше 1 кВ — устройство для передачи электроэнергии по проводам, расположенным на открытом воздухе и прикрепленным при помощи изолирующих конструкций и арматуры к опорам, несущим конструкциям, кронштейнам и стойкам на инженерных сооружениях (мостах, путепроводах и т. п.).

За начало и конец ВЛ (ВЛЗ) принимаются:

  • у ЗРУ — место выхода провода из аппаратного зажима, присоединяемого к проходному изолятору;
  • у ОРУ с линейными порталами — место выхода провода из зажима натяжной гирлянды изоляторов на линейном портале в сторону ВЛ;
  • у КТП — место крепления провода к изолятору КТП или место выхода провода из аппаратного зажима;
  • у ТП с выносным разъединителем — место выхода провода из аппаратного зажима, присоединяемого к разъединителю.

2.5.3. Пролет ВЛ — участок ВЛ между двумя опорами или конструкциями, заменяющими опоры.

Длина пролета — горизонтальная проекция этого участка ВЛ.

Габаритный пролет lгаб — пролет, длина которого определяется нормированным вертикальным расстоянием от проводов до земли при установке опор на идеально ровной поверхности.

Ветровой пролет lветр — длина участка ВЛ, с которого давление ветра на провода и грозозащитные тросы*воспринимается опорой.

Весовой пролет lвес — длина участка ВЛ, вес проводов (тросов) которого воспринимается опорой.

Стрела провеса провода f — расстояние по вертикали от прямой, соединяющей точки крепления провода, до провода.

Габаритная стрела провеса проводa fгаб — наибольшая стрела провеса провода в габаритном пролете.

Анкерный пролет — участок ВЛ между двумя ближайшими анкерными опорами.

Подвесной изолятор — изолятор, предназначенный для подвижного крепления токоведущих элементов к опорам, несущим конструкциям и различным элементам инженерных сооружений.

Гирлянда изоляторов — устройство, состоящее из нескольких подвесных изоляторов и линейной арматуры, подвижно соединенных между собой.

Тросовое крепление — устройство для прикрепления грозозащитных тросов к опоре; если в состав тросового крепления входит один или несколько изоляторов, то оно называется изолированным.

Штыревой изолятор — изолятор, состоящий из изоляционной детали, закрепляемой на штыре или крюке опоры.

Усиленное крепление провода с защитной оболочкой — крепление провода на штыревом изоляторе или к гирлянде изоляторов, которое не допускает проскальзывания проводов при возникновении разности тяжений в смежных пролетах в нормальном и аварийном режимах ВЛЗ.

Пляска проводов (тросов) — устойчивые периодические низкочастотные (0,2-2 Гц) колебания провода (троса) в пролете с односторонним или асимметричным отложением гололеда (мокрого снега, изморози, смеси), вызываемые ветром скоростью 3-25 м/с и образующие стоячие волны (иногда в сочетании с бегущими) с числом полуволн от одной до двадцати и амплитудой 0,3-5 м.

Вибрация проводов (тросов) — периодические колебания провода (троса) в пролете с частотой от 3 до 150 Гц, происходящие в вертикальной плоскости при ветре и образующие стоячие волны с размахом (двойной амплитудой), который может превышать диаметр провода (троса).

* Далее тросы.

2.5.4. Состояние ВЛ в расчетах механической части:

  • нормальный режим — режим при необорванных проводах, тросах, гирляндах изоляторов и тросовых креплениях;
  • аварийный режим — режим при оборванных одном или нескольких проводах или тросах, гирляндах изоляторов и тросовых креплений;
  • монтажный режим — режим в условиях монтажа опор, проводов и тросов.

Закрытые распределительные устройства и подстанции

4.2.81. Закрытые распределительные устройства и подстанции могут располагаться как в отдельно стоящих зданиях, так и быть встроенными или пристроенными. Пристройка ПС к существующему зданию с использованием стены здания в качестве стены ПС допускается при условии принятия специальных мер, предотвращающих нарушение гидроизоляции стыка при осадке пристраиваемой ПС. Указанная осадка должна быть также учтена при креплении оборудования на существующей стене здания.

Дополнительные требования к сооружению встроенных и пристроенных ПС в жилых и общественных зданиях см. в гл.7.1.

4.2.82. В помещениях ЗРУ 35-220 кВ и в закрытых камерах трансформаторов следует предусматривать стационарные устройства или возможность применения передвижных либо инвентарных грузоподъемных устройств для механизации ремонтных работ и технического обслуживания оборудования.

В помещениях с КРУ следует предусматривать площадку для ремонта и наладки выкатных элементов. Ремонтная площадка должна быть оборудована средствами для опробования приводов выключателей и систем управления.

4.2.83. Закрытые РУ разных классов напряжений, как правило, следует размещать в отдельных помещениях. Это требование не распространяется на КТП 35 кВ и ниже, а также на КРУЭ.

Допускается размещать РУ до 1 кВ в одном помещении с РУ выше 1 кВ при условии, что части РУ или ПС до 1 кВ и выше будут эксплуатироваться одной организацией.

Помещения РУ, трансформаторов, преобразователей и т.п. должны быть отделены от служебных и других вспомогательных помещений (исключения см. в гл.4.3, 5.1 и 7.5).

4.2.84. При компоновке КРУЭ в ЗРУ должны предусматриваться площадки обслуживания на разных уровнях в случае, если они не поставляются заводом-изготовителем.

4.2.85. Трансформаторные помещения и ЗРУ не допускается размещать:

1) под помещением производств с мокрым технологическим процессом, под душевыми, ванными и т.п.;

2) непосредственно над и под помещениями, в которых в пределах площади, занимаемой РУ или трансформаторными помещениями, одновременно может находиться более 50 чел. в период более 1 ч. Это требование не распространяется на трансформаторные помещения с трансформаторами сухими или с негорючим наполнением, а также РУ для промышленных предприятий.

4.2.86. Расстояния в свету между неизолированными токоведущими частями разных фаз, от неизолированных токоведущих частей до заземленных конструкций и ограждений, пола и земли, а также между неогражденными токоведущими частями разных цепей должно быть не менее значений, приведенных в табл.4.2.7 (рис.4.2.14-4.2.17).

Гибкие шины в ЗРУ следует проверять на их сближение под действием токов КЗ в соответствии с требованиями 4.2.56.

Комплектные, столбовые, мачтовые трансформаторные подстанции и сетевые секционирующие пункты

4.2.122. Требования, приведенные в 4.2.123-4.2.132, отражают особенности трансформаторных подстанций наружной установки комплектных (КТП), столбовых (СТП), мачтовых (МТП) с высшим напряжением до 35 кВ и низшим напряжением до 1 кВ, а также сетевых секционирующих пунктов (ССП) напряжением до 35 кВ.

Читайте также:  Сколько в России женщин и мужчин 2023 году

Во всем остальном, не оговоренном в 4.2.123-4.2.132, следует руководствоваться требованиями других параграфов данной главы.

4.2.123. Присоединение трансформатора к сети высшего напряжения должно осуществляться при помощи предохранителей и разъединителя (выключателя нагрузки) или комбинированного аппарата “предохранитель-разъединитель” с видимым разрывом цепи.

Управление коммутационным аппаратом должно осуществляться с поверхности земли. Привод коммутационного аппарата должен запираться на замок. Коммутационный аппарат должен иметь заземлители со стороны трансформатора.

4.2.124. Коммутационный аппарат МТП и СТП, как правило, должен устанавливаться на концевой (или ответвительной) опоре ВЛ.

Коммутационный аппарат КТП и ССП может устанавливаться как на концевой (ответвительной) опоре ВЛ, так и внутри КТП и ССП.

4.2.125. На подстанциях и ССП без ограждения расстояние по вертикали от поверхности земли до неизолированных токоведущих частей при отсутствии движения транспорта под выводами должно быть не менее 3,5 м для напряжений до 1 кВ, а для напряжений 10 (6) и 35 кВ – по табл.4.2.7 размер .

На подстанциях и ССП с ограждением высотой не менее 1,8 м указанные расстояния до неизолированных токоведущих частей напряжением 10 (6) и 35 кВ могут быть уменьшены до размера , указанного в табл.4.2.5. При этом в плоскости ограждения расстояние от ошиновки до кромки внешнего забора должно быть не менее размера , указанного в той же таблице.

При воздушных вводах, пересекающих проезды или места, где возможно движение транспорта, расстояние от низшего провода до земли следует принимать в соответствии с 2.5.111 и 2.5.112.

4.2.126. Для обслуживания МТП на высоте не менее 3 м должна быть устроена площадка с перилами. Для подъема на площадку рекомендуется применять лестницы с устройством, запрещающим подъем по ней при включенном коммутационном аппарате.

Для СТП устройство площадок и лестниц не обязательно.

4.2.127. Части МТП, остающиеся под напряжением при отключенном коммутационном аппарате, должны находиться вне зоны досягаемости (1.7.70) с уровня площадки. Отключенное положение аппарата должно быть видно с площадки.

4.2.128. Со стороны низшего напряжения трансформатора рекомендуется устанавливать аппарат, обеспечивающий видимый разрыв.

4.2.129. Электропроводка в МТП и СТП между трансформатором и низковольтным щитом, а также между щитом и ВЛ низшего напряжения должна быть защищена от механических повреждений и выполняться в соответствии с требованиями, приведенными в гл.2.1.

4.2.130. Для подстанций мощностью 0,25 МВ·А и менее допускается освещение низковольтного щита не предусматривать. Освещение и розетки для включения переносных приборов, инструментов на подстанциях мощностью более 0,25 МВ·А должны иметь питание напряжением не выше 25 В.

4.2.131. По условию пожарной безопасности подстанции должны быть расположены на расстоянии не менее 3 м от зданий I, II, III степеней огнестойкости и 5 м от зданий IV и V степеней огнестойкости.

Также необходимо руководствоваться требованиями, приведенными в 4.2.68.

Расстояние от жилых зданий до трансформаторных подстанций следует принимать не менее 10 м при условии обеспечения допустимых нормальных уровней звукового давления (шума).

4.2.132. В местах возможного наезда транспорта подстанции должны быть защищены отбойными тумбами.

РАЗРАБОТАНО с учетом требований государственных стандартов, строительных норм и правил, рекомендаций научно-технических советов по рассмотрению проектов глав. Проекты глав рассмотрены рабочими группами Координационного совета по пересмотру ПУЭ

ПОДГОТОВЛЕНО ОАО «Институт Теплоэлектропроект»

согласовано в установленном порядке с Госстроем России, Госгортехнадзором России, РАО «ЕЭС России» (ОАО «ВНИИЭ»)

УТВЕРЖДЕНО Минэнерго России, приказ от 20 июня 2003 г. N 242

Требования Правил устройства электроустановок обязательны для всех организаций независимо от форм собственности и организационно-правовых форм, а также для физических лиц, занятых предпринимательской деятельностью без образования юридического лица

С 1 ноября 2003 г. утрачивает силу гл. 4.1 Правил устройства электроустановок шестого издания

Установка распределительных устройств в электропомещениях

4.1.23. В электропомещениях (см. 1.1.5.) проходы обслуживания, находящиеся с лицевой или с задней стороны щита, должны соответствовать следующим требованиям:

  1. ширина проходов в свету должна быть не менее 0,8 м, высота проходов в свету не менее 1,9 м. Ширина прохода должна обеспечивать удобное обслуживание установки и перемещение оборудования. В отдельных местах проходы могут быть стеснены выступающими строительными конструкциями, однако ширина прохода в этих местах должна быть не менее 0,6 м;
  2. расстояния от наиболее выступающих неогражденных неизолированных токоведущих частей (например, отключенных ножей рубильников) при их одностороннем расположении на высоте менее 2,2 м до противоположной стены, ограждения или оборудования, не имеющего неогражденных неизолированных токоведущих частей, должны быть не менее:
    • 1,0 м — при напряжении ниже 660 В при длине щита до 7 и 1,2 м при длине щита более 7 м;
    • 1,5 м — при напряжении 660 В и выше.
      Длиной щита в данном случае называется длина прохода между двумя рядами сплошного фронта панелей (шкафов) или между одним рядом и стеной;
  3. расстояния между неогражденными неизолированными токоведущими частями и находящимися на высоте менее 2,2 м при их двухстороннем расположении должны быть не менее:
    • 1,5 м — при напряжении ниже 660 В;
    • 2,0 м — при напряжении 660 В и выше;
  4. неизолированные токоведущие части, находящиеся на расстояниях, меньших приведенных в пп. 2 и 3, должны быть ограждены. При этом ширина прохода с учетом ограждений должна быть не менее оговоренной в п.1;
  5. неогражденные неизолированные токоведущие части, размещенные над проходами, должны быть расположены на высоте не менее 2,2 м;
  6. ограждения, горизонтально размещаемые над проходами, должны быть расположены на высоте не менее 1,9 м;
  7. проходы для обслуживания щитов при длине щита более 7 м должны иметь два выхода. Выходы из прохода с монтажной стороны щита могут быть выполнены как в щитовое помещение, так и в помещения другого назначения. При ширине прохода обслуживания более 3 м и отсутствии маслонаполненных аппаратов второй выход необязателен. Двери из помещений РУ должны открываться в сторону других помещений (за исключением РУ выше 1 кВ переменного тока и выше 1,5 кВ постоянного тока) или наружу и иметь самозапирающиеся замки, отпираемые без ключа с внутренней стороны помещения. Ширина дверей должна быть не менее 0,75 м, высота не менее 1,9 м.

Впервые опасное воздействие электромагнитных полей ЛЭП на человеческий организм было обнаружено в 60-х годах прошлого столетия. После тщательных исследований состояния здоровья людей, близко контактирующих с линиями электропередач в условиях производства, учеными были обнаружены настораживающие факты. Практически все обследованные лица жаловались на повышенную утомляемость, раздражительность, нарушения памяти и сна.

Ко всем вышеперечисленным симптомам, возникающим у человека после частого общения с электромагнитными волнами промышленной частоты, можно смело добавить депрессию, мигрень, дезориентацию в пространстве, мышечную слабость, проблемы с сердечнососудистой системой, гипотонию, нарушения зрения, атрофию цветового восприятия, снижение иммунитета, потенции, изменение состава крови и т.д. и т.п. Список можно продолжить еще целым рядом физиологических расстройств и всевозможных заболеваний.

Очень часто у людей, живущих поблизости ЛЭП, наблюдаются онкологические заболевания, серьезные нарушения репродуктивной функции, а также так называемый синдром электромагнитной сверхчувствительности. Довольно страшно слышать отчеты об исследованиях некоторых иностранных ученных на предмет влияния высоковольтных линий электропередач на здоровье наших детей. Например, шведские и датские исследователи обнаружили то, что дети, проживающие на расстоянии до 150 метров от ЛЭП, подстанций и метро (!), в два раза чаще болеют лейкемией, а практически у каждого из них встречаются расстройства нервной системы.

В некоторых странах существует такой медицинский термин, как электромагнитная аллергия. Люди, ею страдающие, имеют возможность поменять место проживания на другое, находящееся как можно дальше от источников электромагнитного излучения. Причем все это официально спонсируется правительством! Как же комментирую энергетики возможную опасность, исходящую от ЛЭП? В первую очередь, они настаивают на том, что напряжение электрического тока в линиях электропередач может быть разным, а поэтому следует различать безопасное и опасное напряжение. Дальность воздействия магнитного поля, создаваемого ЛЭП, прямо пропорциональна мощности самой линии. Профессионал навскидку определяет класс напряжения ЛЭП. Этими знаниями можете обладать и вы. Все довольно просто – надо обращать внимание на количество проводов в связке (не на самой опоре). Итак: 2 провода – 330 кВ 3 провода – 500 кВ 4 провода – 750 кВ Меньший класс напряжения ЛЭП определяется по количеству изоляторов: 3-5 изоляторов – 35 кВ 6-8 изоляторов – 110 кВ 15 изоляторов – 220 кВ.

Читайте также:  Штраф за просроченные водительские права

Для того чтобы защитить население от вредного воздействия линий электропередач, существуют специальные нормативы, определяющие некую санитарную зону, условно начинающуюся от крайнего провода ЛЭП, спроецированного на землю. Итак: Напряжение менее 20 кВ – 10 м, 35 кВ – 15 м, 110 кВ – 20 м, 150-220 кВ – 25 м, 330 – 500 кВ – 30 м, 750 кВ – 40 м. Вышеперечисленные нормы относятся почему-то именно к Москве и Московской области. Естественно, что в соответствии с ними и выделяются и участки под застройку. Самое интересное, что указанные нормативы не учитывают вредного воздействия электромагнитного излучения, а ведь именно оно подчас в десятки, а иногда и в сотни раз опаснее для здоровья!

А теперь ВНИМАНИЕ! Чтобы магнитное поле не оказывало влияние на состояние вашего здоровья, умножьте каждый из перечисленных показателей на 10… Получается, что самая маломощная ЛЭП безвредна лишь на расстоянии в 100 метров! Провода ЛЭП таят в себе напряжение, максимально соприкасающееся с порогом коронного разряда. В условиях непогоды этот разряд сбрасывает в атмосферу облако противоположно заряженных ионов. Электрическое поле, создаваемое ими, даже на большом удалении от ЛЭП может быть гораздо больше допустимых безвредных величин.

Совсем недавно получил “зеленый свет” новый проект московского правительства о переносе некоторых участков высоковольтных линий электропередач под землю. Освободившуюся площадь мэрия планирует пустить под застройку. Вот тут то и возникает закономерный вопрос – а так ли будут безопасны подземные ЛЭП для проживающих над ними людей? Станут ли застройщики вызывать специалистов-энергетиков на местность, планируемую под строительство жилья? Электромагнитное излучение подземных ЛЭП и его воздействие на человеческий организм, к сожалению, еще малоизученно…

Первыми в подземелье уйдут линии электропередач, расположенные в районах – Ленинский проспект, проспект Мира и Щелковское шоссе. Далее планируется убрать под землю ЛЭП Северо-Восточного административного округа, а именно в Северном и Южном Медведкове, а также в Бибирево и Алтуфьево. Эти территории уже выставлены на продажу и ждут своих инвесторов. Всего же в столице насчитывается больше сотни ЛЭП и электроподстанций открытого типа. Потенциальные застройщики “ЛЭПовых” земель, а вместе с ними и московское правительство, утверждают, что современные технологии позволят полностью изолировать электромагнитное излучение. Для этого планируется использовать коаксиальные кабели, прокладываемые в специальных экранирующих коллекторах.

К сожалению, перенос ЛЭП под землю процедура дорогостоящая (стоящая примерно 1 млн. евро за 1 км прокладываемого кабеля), а поэтому нет никакой гарантии, что девелоперы не будут «экономить». Так что никто не знает – станет ли жилье, возведенное над ЛЭП, безопасным по всем параметрам. Помните, если ваш дом располагается совсем близко от ЛЭП (допустимые санитарные нормы смотри выше), самым правильным решением все-таки явится покупка нового жилья, находящегося в более безопасной зоне!

Современный человек постоянно находится под воздействием огромного количества электромагнитных полей, в очень широком частотном диапазоне — это и электромагнитные поля ЛЭП, и ЭМП создаваемые самой различной офисной и бытовой техникой, и радиоволны мобильных телефонов, находящихся в непосредственной близости от головного мозга говорящего. Подсчитано, что если суммировать электромагнитные поля от всех приборов на Земле, созданных человеком, то их уровень превысит уровень естественного геомагнитного поля Земли в миллионы раз. В наше время установлена связь резонансной частоты с концентрацией ионов в клетке, что объясняет нарушение обменных процессов в организме человека при воздействии излучений.

Исследования воздействия электромагнитных волн проводов ВЛ на мозг и организм человека в целом, доказали, что оно может привести к ряду болезней: радиоволновая, увеличение числа лейкоцитов, изменение частоты сердечного ритма и артериального давления. Иногда в результате воздействия излучения проводов ЛЭП происходят нарушения на клеточном уровне. Отрицательное воздействие электромагнитных полей ЛЭП на человека и на те или иные компоненты экосистем прямо пропорционально мощности поля и времени облучения.

Минимально допустимые расстояния между шинами

Столкнулся со следующей проблемой: Не могу найти таблицу или метод расчета минимально допустимых расстояний между шинами, к примеру, при монтаже на изоляторы. Интересует точность вплоть до 0,5 мм.

Подскажите, пожалуйста, где их можно посмотреть (ГОСТ или просто расчет, в ПУЭ не нашел).

ПУЭ 4.1.15. Открытые токоведущие части, как правило, должны иметь, изоляционное покрытие. Между неподвижно укрепленными токоведущими частями разной полярности, а также между ними и открытыми проводящими частями должны быть обеспечены расстояния не менее 20 мм по поверхности изоляции и не менее 12 мм по воздуху. От неизолированных токоведущих частей до ограждений должны быть обеспечены расстояния не менее 100 мм при сетчатых и 40 мм при сплошных съемных ограждениях.

Еще подумайте как их чистить, а то зарастут «мохом» и минимально допустимые расстояния превратятся в совсем недопустимые.

4eh написал: ПУЭ 4.1.15. Открытые токоведущие части, как правило, должны иметь, изоляционное покрытие. Между неподвижно укрепленными токоведущими частями разной полярности, а также между ними и открытыми проводящими частями должны быть обеспечены расстояния не менее 20 мм по поверхности изоляции и не менее 12 мм по воздуху.

4eh написал: ПУЭ 4.1.15. Открытые токоведущие части, как правило, должны иметь, изоляционное покрытие. Между неподвижно укрепленными токоведущими частями разной полярности, а также между ними и открытыми проводящими частями должны быть обеспечены расстояния не менее 20 мм по поверхности изоляции и не менее 12 мм по воздуху.

Спрошу-ка и я про расстояния.

Выдержка из ПУЭ-7, пункт 1.7.30. Рабочее (функциональное) заземление — заземление точки или точек токоведущих частей электроустановки, выполняемое для обеспечения работы электроустановки (не в целях электробезопасности).

В отличие от защитного заземления, используемого исключительно в целях безопасности людей, рабочее заземление предназначается для того, чтобы гарантировать нормальную работу электрических приборов и устройств.

Обратите внимание: Эта его функция должна выполняться независимо от того, в каких условиях работает электрооборудование: в нормальных штатных или в аварийных.

Реализуется функциональное заземление самым непосредственным образом – через подсоединение металлических токопроводящих частей к так называемому «заземлителю». В качестве этой разновидности ЗУ допускается использовать подключенные к заземляющей конструкции молниеотводы, защищающие предприятия и другие объекты от грозы. Эти же устройства помогают уберечь действующее оборудование от наведенных (или индуцированных) ЭДС, представляющих ничуть не меньшую угрозу для него.

Ограждения и оболочки в электроустановках напряжением до 1 кВ должны иметь степень защиты не менее IP 2X, за исключением случаев, когда большие зазоры необходимы для нормальной работы электрооборудования.

Ограждения и оболочки должны быть надежно закреплены и иметь достаточную механическую прочность.

Вход за ограждение или вскрытие оболочки должны быть возможны только при помощи специального ключа или инструмента либо после снятия напряжения с токоведущих частей. При невозможности соблюдения этих условий должны быть установлены промежуточные ограждения со степенью защиты не менее IP 2X, удаление которых также должно быть возможно только при помощи специального ключа или инструмента.

1.7.105. Заземляющие устройства электроустановок напряжением выше 1 кВ с эффективно заземленной нейтралью в районах с большим удельным сопротивлением земли, в том числе в районах многолетней мерзлоты, рекомендуется выполнять с соблюдением требований, предъявляемых к напряжению прикосновения (1.7.91). В скальных структурах допускается прокладывать горизонтальные заземлители на меньшей глубине, чем этого требуют 1.7.91 – 1.7.93, но не менее чем 0,15 м. Кроме того, допускается не выполнять требуемые 1.7.90 вертикальные заземлители у входов и у въездов. 1.7.106. При сооружении искусственных заземлителей в районах с большим удельным сопротивлением земли рекомендуются следующие мероприятия: 1) устройство вертикальных заземлителей увеличенной длины, если с глубиной удельное сопротивление земли снижается, а естественные углубленные заземлители (например, скважины с металлическими обсадными трубами) отсутствуют; 2) устройство выносных заземлителей, если вблизи (до 2 км) от электроустановки есть места с меньшим удельным сопротивлением земли; 3) укладка в траншеи вокруг горизонтальных заземлителей в скальных структурах влажного глинистого грунта с последующей трамбовкой и засыпкой щебнем до верха траншеи; 4) применение искусственной обработки грунта с целью снижения его удельного сопротивления, если другие способы не могут быть применены или не дают необходимого эффекта. 1.7.107. В районах многолетней мерзлоты, кроме рекомендаций, приведенных в 1.7.106, следует: 1) помещать заземлители в непромерзающие водоемы и талые зоны; 2) использовать обсадные трубы скважин; 3) в дополнение к углубленным заземлителям применять протяженные заземлители на глубине около 0,5 м, предназначенные для работы в летнее время при оттаивании поверхностного слоя земли; 4) создавать искусственные талые зоны. 1.7.108. В электроустановках напряжением выше 1 кВ, а также до 1 кВ с изолированной нейтралью для земли с удельным сопротивлением более 500 Ом.м, если мероприятия, предусмотренные 1.7.105 – 1.7.107, не позволяют получить приемлемые по экономическим соображениям заземлители, допускается повысить требуемые настоящей главой значения сопротивлений заземляющих устройств в 0,002 ро раз, где ро – эквивалентное удельное сопротивление земли, Ом.м. При этом увеличение требуемых настоящей главой сопротивлений заземляющих устройств должно быть не более десятикратного.

Читайте также:  Образец заявления о фальсификации доказательств

проводники (PEN-проводники)

1.7.131. В многофазных цепях в системе TN для стационарно проложенных кабелей, жилы которых имеют площадь поперечного сечения не менее 10 кв. мм по меди или 16 кв. мм по алюминию, функции нулевого защитного (PE) и нулевого рабочего (N) проводников могут быть совмещены в одном проводнике (PEN-проводник). 1.7.132. Не допускается совмещение функций нулевого защитного и нулевого рабочего проводников в цепях однофазного и постоянного тока. В качестве нулевого защитного проводника в таких цепях должен быть предусмотрен отдельный третий проводник. Это требование не распространяется на ответвления от ВЛ напряжением до 1 кВ к однофазным потребителям электроэнергии. 1.7.133. Не допускается использования сторонних в качестве единственного PEN-проводника. Это требование не исключает использования открытых и сторонних проводящих частей в качестве дополнительного PEN-проводника при присоединении их к системе уравнивания потенциалов. 1.7.134. Специально предусмотренные PEN-проводники должны соответствовать требованиям 1.7.126 к сечению защитных проводников, а также требованиям гл. 2.1 к нулевому рабочему проводнику. Изоляция PEN-проводников должна быть равноценна изоляции фазных проводников. Не требуется изолировать шину PEN сборных шин низковольтных комплектных устройств. 1.7.135. Когда нулевой рабочий и нулевой защитный проводники разделены, начиная с какой-либо точки электроустановки, не допускается объединять их за этой точкой по ходу распределения энергии. В месте разделения PEN-проводника на нулевой защитный и нулевой рабочий проводники необходимо предусмотреть отдельные зажимы или шины для проводников, соединенные между собой. PEN-проводник питающей линии должен быть подключен к зажиму или шине нулевого защитного (PE) проводника.

РАЗРАБОТАНО с учетом требований государственных стандартов, строительных норм и правил, рекомендаций научно-технических советов по рассмотрению проектов глав. Проекты глав рассмотрены рабочими группами Координационного совета по пересмотру ПУЭ

ПОДГОТОВЛЕНО ОАО «Институт Теплоэлектропроект»

согласовано в установленном порядке с Госстроем России, Госгортехнадзором России, РАО «ЕЭС России» (ОАО «ВНИИЭ»)

УТВЕРЖДЕНО Минэнерго России, приказ от 20 июня 2003 г. N 242

Требования Правил устройства электроустановок обязательны для всех организаций независимо от форм собственности и организационно-правовых форм, а также для физических лиц, занятых предпринимательской деятельностью без образования юридического лица

С 1 ноября 2003 г. утрачивает силу гл. 4.1 Правил устройства электроустановок шестого издания

РАЗРАБОТАНО с учетом требований государственных стандартов, строительных норм и правил, рекомендаций научно-технических советов по рассмотрению проектов глав. Проекты глав рассмотрены рабочими группами Координационного совета по пересмотру ПУЭ

ПОДГОТОВЛЕНО ОАО «Институт Теплоэлектропроект»

согласовано в установленном порядке с Госстроем России, Госгортехнадзором России, РАО «ЕЭС России» (ОАО «ВНИИЭ»)

УТВЕРЖДЕНО Минэнерго России, приказ от 20 июня 2003 г. N 242

Требования Правил устройства электроустановок обязательны для всех организаций независимо от форм собственности и организационно-правовых форм, а также для физических лиц, занятых предпринимательской деятельностью без образования юридического лица

С 1 ноября 2003 г. утрачивает силу гл. 4.1 Правил устройства электроустановок шестого издания

Конструкции распределительных устройств

4.1.19. Конструкции РУ, НКУ и устанавливаемая в них аппаратура должны соответствовать требованиям действующих стандартов.

4.1.20. Распределительные устройства и НКУ должны быть выполнены так, чтобы вибрации, возникающие при действии аппаратов, а также от сотрясений, вызванных внешними воздействиями, не нарушали контактных соединений и не вызывали разрегулировки аппаратов и приборов.

4.1.21. Поверхности гигроскопичных изоляционных плит, на которых непосредственно монтируются неизолированные токоведущие части, должны быть защищены от проникновения в них влаги (пропиткой, окраской и т.п.)

В устройствах, устанавливаемых в сырых и особо сырых помещениях и открытых установках, применение гигроскопических изоляционных материалов (например, мрамора, асбестоцемента) не допускается.

4.1.22. Конструкции РУ и НКУ должны предусматривать ввод кабелей без нарушения степени защиты оболочки, места для прокладки разделки внешних присоединений, а также наименьшую в данной конструкции длину разделки кабелей. Должен быть обеспечен доступ ко всем обслуживаемым аппаратам, приборам, устройствам и их зажимам. Распределительное устройство должно иметь устройства для подключения нулевых рабочих (N), заземляющих (РЕ) и совмещенных (PEN) проводников внешних кабелей и проводов. В случае когда внешние кабели по сечению или количеству не могут быть подключены непосредственно к зажимам аппаратов, конструкция РУ должна предусматривать дополнительные зажимы или промежуточные шины с устройствами для присоединения внешних кабелей. Распределительные устройства и НКУ должны предусматривать ввод кабелей как снизу, так и сверху, или только снизу или только сверху.

Двух трансформаторные ТП

Двухтрансформаторные ТП применяются при преобладании электроприемников I и II категорий. При этом мощность трансформаторов выбирается такой, чтобы при выходе из работы одного Другой трансформатор с учетом допустимой перегрузки принял бы на себя нагрузку всех потребителей (в этой ситуации можно временно отключить электроприемники III категории). Такие подстанции желательны и независимо от категории потребителей, но при наличии неравномерного суточного или годового графика нагрузки.

В этих случаях выгодно менять присоединенную мощность трансформаторов, например, при наличии сезонных нагрузок, одно или двухсменной работы со значительными изменениями загрузки смен.

Электроснабжение населенного пункта, микрорайона города, цеха, группы цехов или всего предприятия может быть обеспечено от одной или нескольких ТП. Целесообразность сооружения одно или двухтрансформаторных подстанций определяется в результате техникоэкономического сравнения нескольких вариантов системы электроснабжения. Критерием выбора варианта является минимум приведенных затрат на сооружение системы электроснабжения. Сравниваемые варианты должны обеспечивать требуемый уровень надежности электроснабжения.

В системах электроснабжения промышленных предприятий наиболее распространены следующие единичные мощности трансформаторов: 630, 1000,1600 кВА, в электрических сетях городов — 400, 630 кВА. Практика проектирования и эксплуатации показала необходимость применения однотипных трансформаторов одинаковой мощности, так как разнообразие их создает неудобства в обслуживании и вызывает дополнительные затраты на ремонт.


Похожие записи:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *