Здравствуйте, в этой статье мы постараемся ответить на вопрос: «Правила округления чисел после запятой». Если у Вас нет времени на чтение или статья не полностью решает Вашу проблему, можете получить онлайн консультацию квалифицированного юриста в форме ниже.
Округление помогает в самых разных случаях. Например, когда нужно прикинуть результат умножения больших чисел. Допустим, вы хотите представить, сколько будет 738 × 46. По правилам округления, это приблизительно равно 700 × 50. Получается: 738 × 46 ≈ 700 × 50 ≈ 35 000. А точный результат умножения равен 33 948.
Перед тем как перейти к правилам округления значений, стоит разобраться, что представляет собой круглое число. Если речь идет о целых, то оно обязательно заканчивается нулем.
На вопрос, где в повседневной жизни пригодиться такое умение, можно смело ответить – при элементарных походах по магазинам.
С помощью правила приблизительного подсчета можно прикинуть, сколько будут стоить покупки и какую сумму необходимо взять с собой.
Именно с круглыми числами легче выполнять подсчеты, не используя при этом калькулятор.
К примеру, если в супермаркете или на рынке покупают овощи весом 2 кг 750 г, то в простом разговоре с собеседником зачастую не называют точный вес, а говорят, что приобрели 3 кг овощей. При определении расстояния между населенными пунктами также применяют слово «около». Это и значит приведение результата к удобному виду.
Следует отметить, что при некоторых подсчетах в математике и решении задач также не всегда используются точные значения. Особенно это актуально в тех случаях, когда в ответе получают бесконечную периодическую дробь. Приведем несколько примеров, когда используются приближенные значения:
- некоторые значения постоянных величин представляются в округленном виде (число «пи» и прочее),
- табличные значения синуса, косинуса, тангенса, котангенса, которые округлены до определенного разряда.
Когда пригодится округление чисел
Правила округления чисел пригодятся не только при решении задачек, но и когда нужно примерно рассчитать стоимость чего‑то, чтобы понять, укладывается ли она в ваш бюджет или нет.
Также к округлению прибегают, когда абсолютная точность просто не важна. Например, если знакомые из другого города спросят вас, сколько людей живёт в вашем, вы вряд ли будете называть число до десятков и единиц, даже если знаете его. Вы, скорее, скажете, что в нём живёт «примерно четыреста тысяч» или «около миллиона» человек.
Приближённые значения
Приближённые (или приблизительные) значения применяются тогда, когда точное значение чего-то найти невозможно, или же не важно чтобы это значение было точным для исследуемого предмета.
Например, на словах можно сказать, что в городе проживает полмиллиона человек, но это высказывание не будет истинным, поскольку количество человек в городе меняется — люди приезжают и уезжают, рождаются и умирают. Поэтому правильнее будет сказать, что в городе проживает приблизительно полмиллиона человек.
Ещё пример. В девять утра начинаются занятия. Мы вышли из дома в 8:30. Через некоторое время по дороге мы встретили своего товарища, который спросил у нас сколько сейчас времени. Когда мы выходили из дома было 8:30, на дорогу мы потратили какое-то неизвестное время. Мы не знаем сколько сейчас времени, поэтому отвечаем товарищу: «сейчас приблизительно около девяти часов».
Для нахождения приближенного значения применяется такое действие как округление чисел.
Слово «округление» говорит само за себя. Округлить число значит сделать его круглым. Круглым называется число, которое оканчивается нулём. Например, следующие числа являются круглыми:
10, 20, 30, 100, 300, 700, 1000
Любое число можно сделать круглым. Процедуру, при которой число делают круглым, называют округлением числá.
Мы уже занимались «округлением» чисел, когда делили большие числа. Напомним, что для этого мы оставляли без изменения цифру, образующую старший разряд, а остальные цифры заменяли нулями. Но это были лишь наброски, которые мы делали для облегчения деления. Своего рода лайфхак. По факту, это даже не являлось округлением чисел. Именно поэтому в начале данного абзаца мы взяли слово округление в кавычки.
На самом деле, суть округления заключается в том, чтобы найти ближайшее значение от исходного. При этом, число может быть округлено до определённого разряда — до разряда десятков, разряда сотен, разряда тысяч.
Рассмотрим простой пример на округление. Дано число 17. Требуется округлить его до разряда десятков.
Не забегая вперёд попробуем понять, что означает «округлить до разряда десятков». Когда говорят округлить число 17, то надо понимать, что от нас требуют найти ближайшее круглое число от числá 17. Причём в ходе этого поиска возможно изменения коснутся и той цифры, которая располагается в разряде десятков числá 17 (т.е цифры 1).
Зачем нужно округление
Округлять числа необходимо для точности измерений. В некоторых сферах жизни погрешности в расчетах могут иметь очень серьезные последствия. Для этого существует метрология — наука, изучающая правила округления чисел и погрешности.
Приведем несколько примеров, в которых неправильное округление не приведет ни к чему страшному:
Однако есть ситуации, где правильное округление является необходимостью. Наверняка читатель мог подумать, зачем нужна какая-то наука об округлении? Ведь все просто — округлять можно как в большую, так и в меньшую сторону, в зависимости от личной выгоды. Такой принцип применим не ко всем сферам жизни. Науку об округлении в первую очередь необходимо изучать инженерам-электроникам.
Первое правило округления
В предыдущих примерах мы видели, что округляя число до определенного разряда, младшие разряды заменяются нулями. Цифры, которые заменяются нулями, называют отбрасываемыми цифрами.
Первое правило округления выглядит следующим образом:
Если при округлении чисел первая из отбрасываемых цифр 0, 1, 2, 3 или 4, то сохраняемая цифра остаётся без изменений.
Например, округлим число 123 до разряда десятков.
В первую очередь находим сохраняемую цифру. Для этого надо прочитать самó задание. В разряде, о котором говорится в задании и находится сохраняемая цифра. В задании сказано: округлить число 123 до разряда десятков.
Округление десятичных дробей
При округлении десятичных дробей следует быть особенно внимательным, поскольку десятичная дробь состоит из целой и дробной части. И каждая из этих двух частей имеет свои разряды:
Разряды целой части:
- разряд единиц;
- разряд десятков;
- разряд сотен;
- разряд тысяч.
Разряды дробной части:
- разряд десятых;
- разряд сотых;
- разряд тысячных
Округление чисел до целого
Обычно на вопрос «сколько вам лет?» мы отвечаем 13 лет, 15 лет, 28 лет, 45 лет. Гораздо реже мы говорим 13 лет 2 месяца и 4 дня. На вопрос «каково расстояние от Санкт-Петербурга до Москвы?» обычно говорят, например, 632 километра. Гораздо реже можно услышать такой ответ: «632 километра 138 метров».
Почему же не уделяют внимание метрам и сантиметрам? Когда мы говорим о больших расстояниях, то метры и сантиметры уже не имеют большого значения. То же самое происходит, когда мы говорим про возраст.
Месяцы, дни, метры и сантиметры в данных примерах являлись избыточной информацией, которую опускают. В математике есть специальный раздел, который позволяет так же работать с произвольными числами. Этот раздел называется округлением чисел.
Вместо числа мы берем близкое к нему число, но удовлетворяющее той точности, которая нам нужна. Например, если нас интересуют только целые, то мы будем отбрасывать всё, что идет после запятой; если нас интересуют десятки или сотни, то мы отбросим всё после десятков или после сотен соответственно.
Округлением числа до целых называется ближайшее к нему целое число.
Возьмем число 3,8. Какое к нему самое близкое целое число? Число 4. Значит, число 3,8 до целых округляется к 4.
Для получения приближённого значения, полученное в результате каких-либо действий число нужно округлить, то есть заменить его ближайшим круглым числом.
Числа всегда округляют до определённого разряда. Натуральные числа округляются до десятков, сотен, тысяч и т. д. При округлении чисел до десятков, их заменяют круглыми числами, состоящими только из целых десятков, у таких чисел в разряде единиц стоят нули. При округлении до сотен, числа заменяются на более круглые , состоящие только из целых сотен, то есть нули стоят уже и в разряде единиц, и в разряде десятков. И так далее.
Десятичные дроби можно округлять так же как и натуральные числа, то есть до десятков, сотен и т. д. Но также их можно округлять и до десятых, сотых, тысячных частей и т. д. При округлении десятичных знаков разряды не заполняются нулями, а просто отбрасываются. В обоих случаях округление производится по определённому правилу:
Если отбрасываемая цифра больше или равна 5, то предыдущую нужно увеличить на единицу, а если меньше 5, то предыдущая цифра не меняется.
Рассмотрим несколько примеров округления чисел:
- Округлить 43152 до тысяч. Здесь надо отбросить 152 единицы, так как справа от разряда тысяч стоит цифра 1, то предыдущую цифру отставляем без изменений. Приближённое значение числа 43152, округлённое до тысяч будет равно 43000.
- Округлить 43152 до сотен. Первая из отбрасываемых чисел 5, значит предыдущую цифру увеличиваем на единицу:
Перед тем как перейти к правилам округления значений, стоит разобраться, что представляет собой круглое число . Если речь идет о целых, то оно обязательно заканчивается нулем.
На вопрос, где в повседневной жизни пригодиться такое умение, можно смело ответить – при элементарных походах по магазинам.
С помощью правила приблизительного подсчета можно прикинуть, сколько будут стоить покупки и какую сумму необходимо взять с собой.
Именно с круглыми числами легче выполнять подсчеты, не используя при этом калькулятор.
К примеру, если в супермаркете или на рынке покупают овощи весом 2 кг 750 г, то в простом разговоре с собеседником зачастую не называют точный вес, а говорят, что приобрели 3 кг овощей. При определении расстояния между населенными пунктами также применяют слово «около». Это и значит приведение результата к удобному виду.
Использование округлений при работе с числами ограниченной точности
Реальные физические величины всегда измеряются с некоторой конечной точностью, которая зависит от приборов и методов измерения и оценивается максимальным относительным или абсолютным отклонением неизвестного действительного значения от измеренного, что в десятичном представлении значения соответствует либо определённому числу значащих цифр, либо определённой позиции в записи числа, все цифры после (правее) которой являются незначащими (лежат в пределах ошибки измерения). Сами измеренные параметры записываются с таким числом знаков, чтобы все цифры были надёжными, возможно, последняя — сомнительной. Погрешность при математических операциях с числами ограниченной точности сохраняется и изменяется по известным математическим законам, поэтому когда в дальнейших вычислениях возникают промежуточные значения и результаты с больши́м числом цифр, из этих цифр только часть являются значимыми. Остальные цифры, присутствуя в значениях, фактически не отражают никакой физической реальности и лишь отнимают время на вычисления. Вследствие этого промежуточные значения и результаты при вычислениях с ограниченной точностью округляют до того количества знаков, которое отражает реальную точность полученных значений. На практике обычно рекомендуется при длинных «цепочных» ручных вычислениях сохранять в промежуточных значениях на одну цифру больше. При использовании компьютера промежуточные округления в научно-технических приложениях чаще всего теряют смысл, и округляется только результат.
Так, например, если задана сила 5815 гс с точностью до грамма силы и длина плеча 1,4 м с точностью до сантиметра, то момент силы в кгс по формуле , в случае формального расчёта со всеми знаками, окажется равным: 5,815 кгс 1,4 м = 8,141 кгс м . Однако если учесть погрешность измерения, то мы получим, что предельная относительная погрешность первого значения составляет 1/5815 ≈ 1,7 10 −4 , второго — 1/140 ≈ 7,1 10 −3 , относительная погрешность результата по правилу погрешности операции умножения (при умножении приближённых величин относительные погрешности складываются) составит 7,3 10 −3 , что соответствует максимальной абсолютной погрешности результата ±0,059 кгс м! То есть в реальности, с учётом погрешности, результат может составлять от 8,082 до 8,200 кгс м, таким образом, в рассчитанном значении 8,141 кгс м полностью надёжной является только первая цифра, даже вторая — уже сомнительна! Корректным будет округление результата вычислений до первой сомнительной цифры, то есть до десятых: 8,1 кгс м, или, при необходимости более точного указания рамок погрешности, представить его в виде, округлённом до одного-двух знаков после запятой с указанием погрешности: 8,14 ± 0,06 кгс м .
Приближенные значения
В обычной жизни мы часто встречаем два вида чисел: точные и приближенные. И если точные до сих пор были понятны, то с приближенными предстоит познакомиться в 5 классе.
У квадрата четыре стороны — число 4 невозможно оспорить, оно точное. У каждого окна есть своя ширина, и его параметры однозначно точные. А вот арбуз весит примерно 5 кг, и никакие весы не покажут абсолютно точный вес. И градусник показывает температуру с небольшой погрешностью. Поэтому вместо точных значений величин, иногда можно использовать приближенные значения.
Весы показывают, что арбуз весит 5,160 кг. Можно сказать, что арбуз весит примерно 5 кг. Это приближенное значение с недостатком.
Часы показывают время: два часа дня и пятьдесят пять минут. В разговоре про время можно сказать: «почти три» или «время около трех». Это значение времени с избытком.
Если длина платья 1м 30 см, то 1 м — это приближенное значение длины с недостатком, а 1,5 м — это приближенное значение длины с избытком.
Приближенное значение — число, которое получилось после округления.
Для записи результата округления используют знак «приблизительно равно» — ≈.
Округлить можно любое число — для всех чисел работают одни и те же правила.
Округлить число значит сократить его значение до сотых, десятков или тысячных, остальные значения откидываются. Это нужно в случаях, когда полная точность не нужна или невозможна.
Суть округления заключается в том, чтобы найти ближайшее значение от исходного. При этом, число может быть округлено до определённого разряда — до разряда десятков, разряда сотен, разряда тысяч.
Первое правило округления:
Если при округлении чисел первая из отделяемых цифр меньше 5 (0, 1, 2, 3, 4), то последняя из оставляемых цифр остаётся без изменений (усиления или увеличения не производится).
Число 47,271 округлённо записывается как – 47,3. В данном случае цифра 2 будет усилена до 3, так как первая отсекаемая цифра 7, больше чем 5.
Второе правило округления:
Если при округлении чисел первая из отделяемых цифр больше 5 (5, 6, 7, 8, 9), то последняя из оставляемых цифр увеличивается на единицу (производится усиление).
Число 64,28 округлённо записывается как – 64. Число 64 наиболее близко к округляемому числу, чем 65.
Третье правило округления:
Если отсекается цифра 5, а за ней не имеется значащих цифр, то округление выполняется на ближайшее четное число, другими словами, последняя оставляемая цифра остаётся неизменной, если она четная, и усиливается в случае, если она нечетная.
и обо всем
Если она четная, то тысячные просто отбрасываются, а если нечетная — то копейки округляются вверх. То есть по сравнению с математическим округлением разница такая (это тестовый массив чисел, подсчитанных руками). 4.565335, // bank: 4.56, math: 4.57 34.565783, // bank: 34.56, math: 34.57 56.355532, // bank: 56.36, math: 56.36 9.4557642, // bank: 9.45, math: 9.45 10.345643, // bank: 10.34, math: 10.35 7.235345, // bank: 7.24, math: 7.24 9.285456, // bank: 9.28, math: 9.29 3.225, // bank: 3.22, math: 3.23 10.25527, // bank: 10.26, math: 10.26 11.41525, // bank: 11.42, math: 11.42 0.105, // bank: 0.10, math: 0.11 0.115, // bank: 0.12, math 0.12 На самом деле, такой подход не снимает проблему округления полностью, а только значительно сокращает вероятность накопления ошибки за счет того, что количество «четных» и «нечетных» сумм статистически примерно одинаково.
Но на практике такой точности вполне достаточно.